

College Of Electronic Technology-Tripoli Department of computer Engineering

CS427: Software testing

spring 2018

final exam

(2 hours)

Part 1. Please answer 4 questions only (10 marks each).

Q1. Define the following:

- 1- Software testing 2 Black box testing . 3- Cyclomatic complexity
- Q2. Complete the following sentences:
 - 1- Software testing can show only the of failures, but not the of them.
 - 2- The main testing golden rule says: try the the
 - 3- One of the reasons behind software testing is that the software should not do something that says it should do.
 - 4- The concept of software observability can be simplified by the rule : what you is what you
 - 5- Software validation is
 - 6- Testing Maturity Model (TMM) has 5 levels: initial,,

Q3. True or False (with correction of false statements):

- 1- Fault may hide inside a software and remain undetectable for long time.
- 2- The quality of software interface "GUI" may affect the software observability.
- 3- In flow graph the predicate node is the one which has more than two incoming flow paths.
- 4- Regression -test is done to make sure weather the overall proposed system meets system specification.
- 5- Black-box testing is a data driven testing.
- **Q4.** Suppose we want to test the usability aspect of a mobile application titled: "my academic file" developed for helping CET students in on line student services.

Explain your plan to conduct usability testing process for this application.

- Q5. Briefly explain one of the following topics:
 - 1- Software testing automation.
 - 2- Usability testing.

Part2: answer one question only (25 marks each)

Q1. Consider the following specifications:

The players in world cup will be classified into 3 groups: golden, silver, bronze and according to these rules:

- 1- The player will be allocated to **golden group**. if his(total goals >= 10 with red cards=0). or (total goals >= 5 and long_distance >= 65 km/h with yellow cards<2 and red cards=0).
- 2- The player will be allocated to <u>silver group</u>. if his (total goals >= 3 and long_distance >= 50 but <65 km/h with yellow cards<4 and red cards=0).
- 3- The player will be allocated to <u>bronze group</u>. if his (total goals >= 2 and long_distance < 50 km/h with yellow cards<=4 and red cards<=1).

Fnσ	Mol	name	d Al	feria	ni

- a- Apply the black-box testing techniques (class portioning , boundary value analysis) and show the result, provide test case samples in your answer.
- b- Give a test case not covered by above specification.
- c- Try to update the above specification to include uncovered cases.
- .Q2. What type of coverage would you get if you tested the following code with the values:

```
x = 3, y = 4 and x = 2, y = 1.

void calc(int x, int y) {
    if (x < y)
    {
        if (x > 2)
        {
            y++;
        }
        else
        {
            y--;
        }
        // of function
```

- a. Statement coverage but not branch or path coverage
- b. Statement and branch coverage but not path coverage
- c. Statement, branch and path coverage
- d. None of the above

Part3: answer the following question (35 marks)

Q1.

Check the given code, then:

- a- Derive the flow graph.
- b- Find Cyclomatic complexity.
- c- List of independent paths.
- d- Write a test case for each independent path;

```
int a,b,c,p, i=0,x=0;
while( i< 10 ) {
    cin>>a>>b>>c;
    if(a > 0 )
        x=x+2;
    else if ( a < 0)
        x=x-2;
    else
        x=x*2;
    p=c/(b+1);
    if(p > 3)
        { z= x+5 ; cout << z; }
    i=i+1;
} // of while</pre>
```

S. .